Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia.
نویسندگان
چکیده
We applied serial analysis of gene expression (SAGE) to study differentially expressed genes in mouse brain 14 hr after the induction of focal cerebral ischemia. Analysis of >60,000 transcripts revealed 83 upregulated and 94 downregulated transcripts (more than or equal to eightfold). Reproducibility was demonstrated by performing SAGE in duplicate on the same starting material. Metallothionein-II (MT-II) was the most significantly upregulated transcript in the ischemic hemisphere. MT-I and MT-II are assumed to be induced by metals, glucocorticoids, and inflammatory signals in a coordinated manner, yet their function remains elusive. Upregulation of both MT-I and MT-II was confirmed by Northern blotting. MT-I and MT-II mRNA expression increased as early as 2 hr after 2 hr of transient ischemia, with a maximum after 16 hr. Western blotting and immunohistochemistry revealed MT-I/-II upregulation in the ischemic hemisphere, whereas double labeling demonstrated the colocalization of MT with markers for astrocytes as well as for monocytes/macrophages. MT-I- and MT-II-deficient mice developed approximately threefold larger infarcts than wild-type mice and a significantly worse neurological outcome. For the first time we make available a comprehensive data set on brain ischemic gene expression and underscore the important protective role of metallothioneins in ischemic damage of the brain. Our results demonstrate the usefulness of SAGE to screen functionally relevant genes and the power of knock-out models in linking function to expression data generated by high throughput techniques.
منابع مشابه
Bad gene expression following effect of coenzyme Q10 on Wistar rat hippocampus with cerebral ischemia
Background: Q10 coenzyme is a potent antioxidant in the mitochondrial membrane. Releasing the oxygen free radicals occurs in the cerebral ischemia. Using Q10 coenzyme causes strength against oxidative after injury of cerebral ischemia during reperfusion. Also CoQ10 plays an important anti-apoptotic role to reduce Caspase 3 as a key enzyme neuroprotective in apoptosis. According to the sensitive...
متن کاملProtective Effect of the Viola Spathulata Extract on NCX3 Gene Expression in an Animal Model of Cerebral Ischemia
Abstract_ Introduction: Viola plant has been used traditionally for the treatment of neurological disorders. We aimed at determining whether pretreatment with Viola spathulata extract can alleviate the severity of ischemic-reperfusion damages and it can exert its protective effects through the regulation of a sodium/calcium exchanger (NCX3) gene expression in a rat brain. Methods: Male Wistar r...
متن کاملNeuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia
Objective(s): Stroke poses a crucial risk for mortality and morbidity. Our study aimed to investigate the effect of p-coumaric acid on focal cerebral ischemia in rats. Material and Methods: Rats were randomly divided into four groups, namely Group I (control rats), Group II (ischemia rats), Group III (6 hr ischemia + p-coumaric acid rats) and Group IV (24 hr ischemia + p-coumaric acid rats). C...
متن کاملP18: Neuroprotective Effect of Safranal, an Active Ingredient of Crocus Sativus, in a Rat Model of Transient Cerebral Ischemia
Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L.) petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery ...
متن کاملCatalase and Metallothionein genes expression analysis in wheat cultivars under drought stress condition
Drought stress is one of the serious problems that restricted agronomic plant production worldwide. In molecular level, the harmful effect of drought stress is mostly caused by producing of large amount of reactive oxygen species (ROS). Catalase and Metallothionein genes have a crucial role to mope the hydrogen peroxide (H2O2) resulting reducing oxidative damage. In this research the gene expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 14 شماره
صفحات -
تاریخ انتشار 2002